a^2-18a+16=0

Simple and best practice solution for a^2-18a+16=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2-18a+16=0 equation:



a^2-18a+16=0
a = 1; b = -18; c = +16;
Δ = b2-4ac
Δ = -182-4·1·16
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{65}}{2*1}=\frac{18-2\sqrt{65}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{65}}{2*1}=\frac{18+2\sqrt{65}}{2} $

See similar equations:

| 4x(5^2x)=10 | | 9m-1+6m=29 | | 4(3^2x+1)+17(3^x)=7 | | 2x-17=-63 | | 3(t+7)=21 | | y-1.7=4.3 | | v+1.35=5.66 | | 104=(1)/(2)h(10+3) | | 67x=89 | | 5z-3=4z+2 | | 168/x=2x-10 | | 4(x^2+70x-50)=0 | | -5x+2=x+10 | | 5y-126=-13y | | 5m+3=7m-1 | | 9y+3(3)=y | | 7p=4p+18 | | q/21=3 | | 2t/11=4 | | 72/y=3 | | -8x-3=-2x+4 | | 2x-20=12+6x | | 8-2+1x5-3=2 | | 20553=x+0.105x | | 25x/15=13 | | n+4n+5n=14 | | x+2x+8x=360 | | 45x=95 | | 3m-2=7m= | | 25/x=x/2 | | 2(2x+4)=14 | | 7t+2(t+5)=15 |

Equations solver categories